编号
zgly0001743937
文献类型
期刊论文
文献题名
基于无人机多光谱影像的松材线虫病单木尺度监测
作者单位
贵州大学林学院
贵州大学林业信息工程研究中心
母体文献
林业资源管理
年卷期
2022,(5)
页码
107-117
年份
2022
分类号
S763
P237
TP751
关键词
松材线虫病
无人机多光谱
摄影测量点云
单木分割
文摘内容
松材线虫病是最具危害性的森林病害之一,亟需采取精准的监测手段来确定病疫木的株数和位置,实现松材线虫病的高效防控。利用多光谱无人机获取贵州省榕江县忠诚镇松材线虫病疫区图像,以无人机多光谱及其衍生点云作为数据源。首先,通过点云分割算法对研究区单木进行定位识别和树冠轮廓分割;然后,以分割单元提取光谱特征,并通过随机森林与递归特征消除相结合(RF-RFE)筛选出最佳特征集;最后,基于筛选特征集用于随机森林(RF)和支持向量机(SVM)检测模型构建,并评价模型检测性能,同时,使用RF和SVM对研究区进行感病情况反演,绘制松材线虫病空间分布图。结果表明:1)基于摄影测量点云单木分割效果较好,整体F-score为82.21%;经过特征筛选构建的RF模型,其OA和Kappa分别为84.4%和0.74,SVM的为76.09%和0.66。2)在树木健康、早期、中期和晚期4个阶段的检测中,RF的F-score值分别为78.43%,69.23%,83.33%和94.12%;SVM的为80.7%,55.81%,70.18%和84.13%。综合比较,RF的检测性能最好。研究表明,采用无人机多光谱影像和摄影测量点云相结合进行松材线虫病单木尺度监测具有可行性。通过研究,以期为低成本和精准的松材线虫病遥感监测提供参考。