编号
zgly0001594950
文献类型
期刊论文
文献题名
基于随机森林算法的地表温度降尺度研究
作者单位
南京信息工程大学地理与遥感学院
母体文献
国土资源遥感
年卷期
2018年01期
年份
2018
分类号
P407
关键词
遥感
地表温度(LST)
降尺度
随机森林(RF)
文摘内容
地表温度(land surface temperature,LST)是地面能量平衡等模型中的重要参数之一。高时间分辨率的遥感LST可通过降尺度处理实现空间分辨率的提高,这对详细的LST时空分布监测具有重要意义。以北京市为研究区,选择Landsat8 OLI/TIRS数据,通过改进的单窗(improved mono-window,IMW)算法反演LST作为验证数据,在计算归一化差值植被指数(normalized difference vegetation index,NDVI)和归一化差值建筑指数(normalized difference built-up index,NDBI)等多种遥感指数并模拟至1 000 m空间分辨率的基础上,联合空间分辨率为1 000 m的MODIS/LST产品,利用随机森林(random forest,RF)模型实现LST(100 m空间分辨率)降尺度,并与多因子回归方法和基于植被指数的LST锐化算法(TsHARP)2种常用降尺度方法进行对比。实验结果表明:以模拟Landsat/LST作为降尺度数据源,RF方法降尺度LST的均方根误差(root-mean-square,RMSE)为2.01 K,与多因子回归方法和TsHARP算法相比,精度分别提高了0.16 K和0.44 K;针对MODIS/LST降尺度时,RF方法的RMSE为2.29 K,与多因子回归方法和TsHARP算法相比,精度分别提高了0.42 K和0.50 K;针对不同地表类型,RF算法降尺度效果不同,其中高植被覆盖区表现最优,RMSE为1.81 K;城镇表面因其空间异质性,RMSE则达到了2.75 K。